QR codes, how do they work? Hold up, that's a good question! (English translation)

Michael PAPER

December 30, 2024

As a reminder, we're talking about those things

As a reminder, we're talking about those things ${\odot}{\bullet}{\circ}{\circ}{\circ}{\circ}$

C'mon let's go we're gonna make one

Conclusion

First example

Figure 1: A beautiful little QR code (go ahead, do it, scan it)

Michael PAPER

QR codes, how do they work?

As a reminder, we're talking about those things $\bigcirc \odot \odot \odot \bigcirc \bigcirc \bigcirc$

C'mon let's go we're gonna make one

Conclusion

Another example

Figure 2: Another QR code, a little bit bigger and with a little extra something

Michael PAPER

As a reminder, we're talking about those things $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

C'mon let's go we're gonna make one

Yet another example

Figure 3: A big, very big QR code

Michael PAPER

 $\mathsf{QR}\xspace$ codes, how do they work?

As a reminder, we're talking about those things 0000 \bullet

C'mon let's go we're gonna make one

Conclusion

Many more examples!

--

Let's pick the content of the QR code at random

Conclusion

Let's pick the content of the QR code at random

Just kidding lol

Conclusion

Let's pick the content of the QR code at random

Just kidding lol We'll make https://michaelpaper.xyz

Conclusion

Let's pick the content of the QR code at random

Just kidding lol We'll make https://michaelpaper.xyz I get to choose

Conclusion

Let's pick the content of the QR code at random

Just kidding lol We'll make https://michaelpaper.xyz I get to choose I don't care if you don't like it

Michael PAPER

QR codes, how do they work?

Conclusion

Let's pick the content of the QR code at random

Just kidding lol We'll make https://michaelpaper.xyz I get to choose I don't care if you don't like it l et's do it!

Michael PAPER

QR codes, how do they work?

First we gotta choose a few things

We gotta choose the size of the QR code

- There's "versions" between 1 and 40
- Version *n* has sides of length 4n + 17
- We'll use version 4
- I choose
- \blacksquare That means 33 \times 33
- Whatcha gonna do

We gotta pick the amount of redundancy

- $\blacksquare + \mathsf{redundancy} \to \mathsf{content}$
- 4 levels of redundancy are available
- We'll take the maximum
- You don't get to choose
- I'm the one who choose
- If you don't like it come and fight me

Then we gotta encode the content!

There's a few types of encoding:

- 1 Kanji
- 2 Binary (basically ASCII)
- 3 Numeric
- 4 Alphanumeric

- We can put several segments in a single symbol
 - But ugh I don't feel like it.
- I don't understand how kanji works.
- ASCII is boring.
- We wanna encode symbols that are not numbers

Then we gotta encode the content!

There's a few types of encoding:

- 1 Kanji
- 2 Binary (basically ASCII)
- 3 Numeric
- 4 Alphanumeric

- We can put several segments in a single symbol
 - But ugh I don't feel like it.
- I don't understand how kanji works.
- ASCII is boring.
- We wanna encode symbols that are not numbers
- So we'll go with (4) !

Every character is assigned a value (table 5 in the standard)

'0'	\rightarrow	0	'D'	\rightarrow	13	'Q'	\rightarrow	26	'*'	\rightarrow	39
'1'	\rightarrow	1	'E'	\rightarrow	14	'R'	\rightarrow	27	'+'	\rightarrow	40
'2'	\rightarrow	2	'F'	\rightarrow	15	'S'	\rightarrow	28	' _ '	\rightarrow	41
'3'	\rightarrow	3	'G'	\rightarrow	16	'T'	\rightarrow	29	'.'	\rightarrow	42
'4'	\rightarrow	4	'H'	\rightarrow	17	יטי	\rightarrow	30	'/'	\rightarrow	43
'5'	\rightarrow	5	'I'	\rightarrow	18	' V '	\rightarrow	31	':'	\rightarrow	44
'6'	\rightarrow	6	۰J۰	\rightarrow	19	'W'	\rightarrow	32			
'7'	\rightarrow	7	'K'	\rightarrow	20	' X '	\rightarrow	33			
'8'	\rightarrow	8	'L'	\rightarrow	21	'Y'	\rightarrow	34			
'9'	\rightarrow	9	'M'	\rightarrow	22	'Z'	\rightarrow	35			
'A'	\rightarrow	10	' N '	\rightarrow	23		\rightarrow	36			
'B'	\rightarrow	11	'0'	\rightarrow	24	'\$'	\rightarrow	37			
'C'	\rightarrow	12	'P'	\rightarrow	25	'%'	\rightarrow	38			

Michael PAPER

Conclusion

Complex computation of the conversion

"HT"	\rightarrow	table5['H']	*	45	+	table5['T']
"TP"	\rightarrow	table5['T']	*	45	+	table5['P']
"S:"	\rightarrow	table5['S']	*	45	+	table5[':']
"//"	\rightarrow	<pre>table5['/']</pre>	*	45	+	table5['/']
"MI"	\rightarrow	<pre>table5['M']</pre>	*	45	+	table5['I']
"CH"	\rightarrow	table5['C']	*	45	+	table5['C']
"AE"	\rightarrow	<pre>table5['A']</pre>	*	45	+	table5['E']
"LP"	\rightarrow	table5['L']	*	45	+	table5['P']
"AP"	\rightarrow	<pre>table5['A']</pre>	*	45	+	table5['P']
"ER"	\rightarrow	table5['E']	*	45	+	table5['R']
".X"	\rightarrow	table5['.']	*	45	+	<pre>table5['X']</pre>
"YZ"	\rightarrow	<pre>table5['Y']</pre>	*	45	+	table5['Z']

\rightarrow	17	*	45	+	29	\rightarrow	794
\rightarrow	29	*	45	+	25	\rightarrow	1330
\rightarrow	28	*	45	+	44	\rightarrow	1304
\rightarrow	43	*	45	+	43	\rightarrow	1978
\rightarrow	22	*	45	+	18	\rightarrow	1008
\rightarrow	12	*	45	+	17	\rightarrow	557
\rightarrow	10	*	45	+	14	\rightarrow	464
\rightarrow	21	*	45	+	25	\rightarrow	970
\rightarrow	10	*	45	+	25	\rightarrow	475
\rightarrow	14	*	45	+	27	\rightarrow	657
\rightarrow	42	*	45	+	33	\rightarrow	1923
\rightarrow	34	*	45	+	35	\rightarrow	1565

Michael PAPER

We turn that into 1s and 0s

Each pair of characters can be stored on 11 bits.

```
794 ++ 1330 ++ 1304 ++ 1978 ++ 1008 ++ 557 ++ 464 ++ 970 ++ 475 ++ 657
++ 1923 ++ 1565
```

=

=

We add small useful thingies

Before:

- The alphanumeric encoding mode: 0010
- \blacksquare The number of characters we encode: 24 \rightarrow 000011000

After:

- TERMINATOR: 0000
- Padding (bits): 000
- More padding (bytes): 11101100 00010001

We have all the bits!

We split up the content into blocks

Salomom Reed error correction codes

- They're a lot of fun
- But they're not trivial
- They consist of polynomial euclidian divisions and shit
- So we'll just assume that we know how to compute them

We compute error correction codes for each block

We move things around

Michael PAPER

Ok now let's get to it and start drawing

Figure 4: It's like a puzzle, you gotta start with the corners

Michael PAPER

QR codes, how do they work?

Draw me a sheep

Figure 5: Then you gotta do the edges

Draw me a sheep that squints

Figure 6: Look at table E1 in the standard to add squinty eyes

QR codes, how do they work?

Michael PAPER

We add information about the QR code

Figure 7: We indicate the amount of error correction and the masking pattern, with redundancy

As a reminder, we're talking about those things $_{\rm OOOOO}$

C'mon let's go we're gonna make one

Conclusion

Now we zig-zag through the remaining pixels

Figure 8: The scientific name of that kind of zig-zagging exists (but I forgot it)

24/ 30

As a reminder, we're talking about those things $_{\rm OOOOO}$

C'mon let's go we're gonna make one

Tadam !

Figure 9: Colorful tadam!

Figure 10: Black and white tadam!

Michael PAPER

QR codes, how do they work?

Tadam?

Tadam? Tadam!?

Tadam? Tadam!? Why are there more slides?

Tadam? Tadam!? Why are there more slides? Let us out!

We still have to XOR this whole mess with a masking pattern

As a reminder, we're talking about those things $_{\rm OOOOO}$

C'mon let's go we're gonna make one

Real tadam!!!

QR codes are AMUSING!

QR codes are AMUSING! Cheers